MAX8561ETA

PLASTIC ENCAPSULATED DEVICES

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager

Reviewed by

Bryan J. Preeshl Quality Assurance
Executive Director

Conclusion

The MAX8561 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents
I.Device Description
II.Manufacturing Information
III.Packaging Information
V.Quality Assurance Information
VI.Reliability Evaluation IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX8561 step-down dc-dc converter is optimized for applications that prioritize small size and high efficiency. It utilizes a proprietary hysteretic-PWM control scheme that switches with fixed frequency and is adjustable up to 4 MHz , allowing customers to trade efficiency for smaller external components. Output current is guaranteed up to 500 mA , while quiescent current is only $40 \mu \mathrm{~A}$ (typ).

Internal synchronous rectification greatly improves efficiency and eliminates the external Schottky diode required in conventional step-down converters. Built-in soft-start eliminates inrush current to reduce input capacitor requirements. The MAX8561 features logic-controlled output voltage.

The MAX8561 is available in space-saving 8 -pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Thin DFN packages.
B. Absolute Maximum Ratings

> Item

IN, FB, SHDN, ODI, ODO to GND
LX to GND (Note 1)
PGND to GND
LX Current
Output Short Circuit to GND (typical operating circuit)
Operating Temperature Range Junction Temperature Storage Temperature Range Lead Temperature (soldering, 10s)
Continuous Power Dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$)
8-Pin Thin DFN (3×3)
Derates above $+70^{\circ} \mathrm{C}$ 8 -Pin Thin DFN (3 x 3)

Rating

-0.3 V to +6 V
-0.3 V to (VIN + 0.3V)
-0.3 V to +0.3 V
1.27A

10s
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$
1951 mW
$24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Note 1: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed the IC's package power-dissipation limits.

II. Manufacturing Information

A. Description/Function: $4 \mathrm{MHz}, 500 \mathrm{~mA}$ Synchronous Step-Down DC-DC Converters in SOT and TDFN
B. Process: B8 (Standard 0.8 micron silicon gate CMOS)
C. Number of Device Transistors:

1271
D. Fabrication Location:

California, USA
E. Assembly Location: Thailand
F. Date of Initial Production:

July, 200

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:

Class UL94-V0
I. Classification of Moisture Sensitivity

8-Pin Thin DFN

Copper
Solder Plate
Silver-Filled Epxoy
Gold (1.3 mil dia.)
Epoxy with silica filler
\# 05-9000-0685

per JEDEC standard JESD22-112:

Level 1

IV. Die Information

A. Dimensions:
B. Passivation:
C. Interconnect:
D. Backside Metallization:
E. Minimum Metal Width:
F. Minimum Metal Spacing:
G. Bondpad Dimensions:
H. Isolation Dielectric:
I. Die Separation Method:
40×59 mils
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
Aluminum/Si $(\mathrm{Si}=1 \%)$
None
0.8 microns (as drawn)
0.8 microns (as drawn)

5 mil. Sq.
SiO_{2}
Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations)

Bryan Preeshl (Executive Director)
Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test
B.

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$
\begin{aligned}
& \lambda=\frac{1}{\text { MTTF }}=\frac{1.83}{192 \times 4389 \times 48 \times 2} \text { (Chi square value for MTTF upper limit) } \\
& \Delta=22.62 \times 10^{-9} \\
& \lambda=22.62 \text { F.I.T. }\left(60 \% \text { confidence level } @ 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. \# 06-6205) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).
B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD $=20$ or less before shipment as standard product. Additionally, the industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ testing is done per generic device/package family once a quarter.
C. E.S.D. and Latch-Up Testing

The PN18-1 die type has been found to have all pins able to withstand a transient pulse of $\pm 1000 \mathrm{~V}$, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 250 \mathrm{~mA}$.

Table 1
Reliability Evaluation Test Results
MAX8561ETA

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test (Note 1)	Ta $=135^{\circ} \mathrm{C}$ Biased Time $=192$ hrs.	DC Parameters \& functionality		48	0

Moisture Testing (Note 2)

Pressure Pot	$\begin{aligned} & \mathrm{Ta}=121^{\circ} \mathrm{C} \\ & \mathrm{P}=15 \mathrm{psi} \\ & \mathrm{RH}=100 \% \\ & \text { Time }=168 \text { hrs. } \end{aligned}$	DC Parameters \& functionality	QFN	77	0
85/85	$\begin{aligned} & \mathrm{Ta}=85^{\circ} \mathrm{C} \\ & \mathrm{RH}=85 \% \\ & \text { Biased } \\ & \text { Time }=1000 \mathrm{hrs} . \end{aligned}$	DC Parameters \& functionality		77	0

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77	
Cycle	1000 Cycles	\& functionality		0
	Method 1010			

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data

TABLE II. $\underline{\text { Pin combination to be tested. } 1 / 2 / 2 / 20}$

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except $\mathrm{V}_{\text {PS1 }}$ 3/	All $\mathrm{V}_{\text {PS } 1}$ pins
2.	All input and output pins	All other input-output pins

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground
(e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{S S 1}$, or $V_{S S 2}$ or $V_{S S 3}$ or $V_{C C 1}$, or $V_{C C 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Method 3015.7
Notice 8

PKG．CDDE：${ }^{\text {T }}$ 833－1		SIGNATURES	DATE	ノVIノXIノVI CDNFIDENTIAL \＆PRDPRIETARY	
CAV．／PAD SIZE：	PKG．			BCND DIAGRAM \＃：	REV：
71×102	DESIGN			05－9000－0685	A

